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We propose to combine the Floquet formalism for systems in ac fields with the dynamical mean-field theory
to study correlated electron systems periodically driven out of equilibrium by external fields such as intense
laser light. This approach has a virtue that we can nonperturbatively include both the correlation effects and
nonlinear effects due to the driving field, which is imperative in analyzing recent experiments for photoinduced
phase transitions. In solving the problem, we exploit a general theorem that the Hamiltonian in a Floquet
matrix form can be exactly diagonalized for single-band noninteracting systems. As a demonstration, we have
applied the method to the Falicov-Kimball model in intense ac fields to calculate the spectral function. The
result shows that photoinduced midgap states emerge from strong ac fields, triggering an insulator-metal
transition.
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I. INTRODUCTION

Controlling phases of matter is a central issue in the phys-
ics of strongly correlated electron systems, where a rich va-
riety of phases are realized for various physical degrees of
freedom such as spin and charge. Since a phase transition
dramatically alters macroscopic properties of the system, it is
of great importance to know how the phase changes as ex-
ternal parameters �temperature, pressure, band filling of the
system, etc.� are varied, in equilibrium.

Now, the last decade witnessed that a controlling factor,
intense laser fields, can trigger “phase transitions” in corre-
lated electron materials.1,2 One representative class of mate-
rials is perovskite manganites, in which an insulator-to-metal
transition is induced by photoexcitation.3,4 Recent experi-
ments also indicate that a ferromagnetic spin alignment can
emerge in the induced metallic phase in manganites.5 Such
phenomena are called photoinduced phase transitions
�PIPTs�, where irradiation of photons allows one to change
electronic, magnetic, optical, or structural properties of the
system.

The photoinduced phase transition, however, is distinct
from conventional phase transitions in equilibrium in that the
photon field drives the system out of equilibrium. In other
words, the change in phases in nonequilibrium challenges
our understanding of phase transitions which is normally
conceived in equilibrium. In the PIPT, we have to consider,
on top of the nonlinear electric-field effect, the electron cor-
relation effect. The nonlinear effect appears as a threshold
behavior, i.e., a macroscopic transition only occurs when the
intensity of the driving field exceeds a certain strength. On
the other hand, important correlation effects such as Mott’s
metal-insulator transition are nonperturbative effects. Thus,
we cannot employ the linear-response theory6 nor a mean-
field treatment of the electron-electron interaction.

Here we propose a theoretical approach7 for photoinduced
phenomena, where the Floquet-Green function method
�FGFM� �Refs. 8–11� is plugged into the dynamical mean-
field theory �DMFT�.12 This formulation provides us with a
promising way to treat both of the nonlinear effect of the
electric field and the correlation effect simultaneously in a

nonperturbative manner. We then apply the method to study
the response of the Falicov-Kimball �FK� model,13,14 one of
the simplest lattice models for correlated electrons, to ac
electric fields. A particular emphasis is put on the technical
basis of FGFM.

During the preparation of the present study, we notice that
Joura et al.15 adopted a technique similar to FGFM to solve
the Dyson equation for a system in dc fields. Here we present
a general framework of DMFT out of equilibrium for arbi-
trary time-periodic fields in a more transparent viewpoint
exploiting the Floquet formalism. In this context we should
emphasize that FGFM is not just a numerical technique but
offers a fruitful physical picture for nonequilibrium systems
as revealed here.

The paper is organized as follows: in Sec. II, we review
the Floquet theorem and the Floquet matrix method, on
which our theoretical description is based. The rest of the
paper is devoted to our original formulation. In Sec. III we
define the Floquet matrix form of Green’s function, which is
our starting point of FGFM. Then in Sec. IV, we derive a
general expression for Green’s function and its inverse for
noninteracting electrons in a Floquet matrix form. We calcu-
late noninteracting Green’s functions for several cases to dis-
cuss their physical implications. In Sec. V, we derive a gen-
eral theorem that identifies the eigenvalues and the
eigenvectors of a Floquet matrix form of the Hamiltonian for
noninteracting electrons. While Secs. IV and V address non-
interacting cases, we move on to correlated electron systems
by incorporating FGFM in DMFT in Sec. VI. We formulate
the obtained Green’s function in a gauge-invariant manner in
Sec. VII. We then apply our method to the FK model in Sec.
VIII, and calculate the spectral functions for dc and ac fields,
where we discuss how the Mott-insulating state is trans-
formed into the metallic states in the external fields. We sum-
marize the paper and give future problems in Sec. IX.

II. FLOQUET THEOREM AND FLOQUET MATRIX

An external field drives an electron having an energy �
into another state with a different energy, where there are
many scattering channels in nonequilibrium. However, if the
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driven system is periodic in time with a frequency �, the
allowed channels are limited to the processes such that �
→�+n�, where n is an integer. This greatly reduces the
channels’ degrees of freedom to be dealt with. One can take
advantage of such a simplification through the Floquet ma-
trix method,16–18 of which we give an overview in this sec-
tion.

The method has been used as an effective approach to-
ward photoexcited systems. The concept of the Floquet ma-
trix originates from the Floquet theorem19 for a periodically
driven system, an analog of the Bloch theorem applied to a
spatially periodic system. Floquet theorem is a general theo-
rem for differential equations of a form dx�t� /dt=C�t�x�t�
with C periodic in t, which include equations of motion for
systems subject to external driving forces that periodically
oscillate in time. One representative example is the Mathieu
equation which describes a parametric resonance phenom-
enon. Here we restrict ourselves to a quantum system whose
dynamics is determined by the time-dependent Schrödinger
equation,

i
d

dt
��t� = H�t���t� , �1�

where ��t� is a state vector of the system, and H�t� is the
time-dependent Hamiltonian, which is assumed to be peri-
odic in t,

H�t + �� = H�t� , �2�

with a period �. The Floquet theorem states that there exists
a solution of Eq. �1� which is an eigenstate of the time trans-
lation operation t→ t+�, implying

���t� = e−i��tu��t� , �3�

with e−i��� as an eigenvalue of the time translation, � as a set
of quantum numbers, and u��t�=u��t+�� as a periodic func-
tion of t. Hence we can Fourier expand u��t� as u��t�
=�ne−in�tu�

n with the frequency �=2� /�, where u�
n is called

the nth Floquet mode of Floquet state �3�. We can then Fou-
rier transform Eq. �1� to have

�
n

Hmnu�
n = ��� + m��u�

m, �4�

where

Hmn �
1

�
�

−�/2

�/2

dtei�m−n��tH�t� �5�

is the Floquet matrix form of the Hamiltonian. The factor
��+m� appearing on the right-hand side �rhs� of Eq. �4� is
called quasienergy, which forms a ladder of energies with a
spacing �. Since the Hamiltonian is time dependent, the en-
ergy is not conserved in general. However, Eq. �4� shows
that the energy is conserved up to an integer multiple of �,
corresponding to the absorption or emission of the photon
with the energy �. Each element in the Floquet matrix Hmn
corresponds to the probability amplitude of the transition
from the mth Floquet mode to the nth one, so that off-
diagonal components represent excitations driven by the ex-

ternal field while the diagonal ones the probability to remain
in the same mode.

The consequence of the Floquet theorem is remarkable:
Eq. �4� resembles the static Schrödinger equation in equilib-
rium except for the presence of the Floquet mode index n,
which means that we have no longer to solve the time-
dependent Schrödinger Eq. �1�, in favor of the time-
independent Eq. �4�. This is the great advantage of the Flo-
quet matrix method, which also plays a crucial role in
Green’s-function approach.

III. FLOQUET REPRESENTATION OF GREEN’S
FUNCTION

Besides the Floquet analysis of the Hamiltonian, we can
alternatively describe nonequilibrium states in Green’s-
function approach based on the Keldysh formalism.20,21 The
approach of the Floquet matrix proves its own worth when it
is used within Green’s-function formalism. The idea of
FGFM was first introduced by Faisal,8 followed by several
groups.9–11 In this section we give another way to define a
Floquet matrix form of Green’s function, which we shall use
in this paper.

A Green’s function has two independent arguments of
time, t and t�, as denoted by G�t , t��. We define variables
trel� t− t� and tav��t+ t�� /2. In equilibrium the system is in-
variant against continuous time translation, so that Green’s
functions depend on t and t� only through trel, which enables
us to Fourier transform them into functions of 	. However,
when the system is driven out of equilibrium, they generally
depend on both trel and tav. Since the periodic system that we
consider in this paper has the discrete time translation invari-
ance �Eq. �2��, it is guaranteed that Green’s function is also
invariant against tav→ tav+�. For an arbitrary function
G�t , t�� �not limited to Green’s function� that satisfies the
periodicity condition, G�t+� , t�+��=G�t , t��, we can define
the Wigner transformation of G as

Gn�	� = �
−





dtrel
1

�
�

−�/2

�/2

dtave
i	trel+in�tavG�t,t�� . �6�

We call Gn�	� the Wigner representation of the function G.
Using the Wigner representation, we define the Floquet ma-
trix form of G as

Gmn�	� � Gm−n�	 +
m + n

2
�	 , �7�

and call Gmn�	� the Floquet representation. Hereafter a func-
tion with one index n should be understood as a Wigner
representation, while two indices m and n mean a Floquet
representation. In the Floquet representation, we use the re-
duced zone scheme, i.e., the range of 	 is restricted to the
“Brillouin zone” on the frequency axis: −� /2�	�� /2.
We can readily check that definition �7� is equivalent to the
one given by Refs. 8–11. The Floquet representation is used
during calculations, while the Wigner representation is used
when we interpret the result since the Wigner representation
has a clear physical interpretation that Gn is the nth oscillat-
ing mode in tav of G�t , t��.
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Actually, the Floquet representation Gmn�	� has a one-to-
one correspondence with the Wigner representation G��	��.
G��	��→Gmn�	�: the integers m and n should obey the con-
ditions

m − n = � , �8�

−
�

2
�	� −

m + n

2
��

�

2
, �9�

for � and 	�. There are two consecutive integers k and k
+1 which can be equal to m+n satisfying Eq. �9�. Either k or
k+1 is congruent to � modulo 2. Thus m+n is uniquely
determined via Eq. �9� and the condition m+n�m−n��
�mod 2�. Together with Eq. �8�, m and n are uniquely deter-
mined. For such m and n, 	 is given by 	�− �m+n�� /2.
Gmn�	�→G��	��: � and 	� are uniquely determined by �
=m−n and 	�=	+ �m+n�� /2.

We can immediately realize the advantage of the Floquet
representation in multiplications of two Floquet-represented
functions. As shown in Appendix A, the mapping from
G�t , t�� to Gmn�	� preserves a multiplication structure,

� dt�A�t,t��B�t�,t�� = C�t,t��

⇔�
�

Am��	�B�n�	� = Cmn�	� .

As an example, the Floquet representation of the Dyson
equation is simplified into

�Gk�mn�	� = �Gk
0�mn�	� + �

m�n�

�Gk
0�mm��	��k�m�n��	�

��Gk�n�n�	� , �10�

where G and G0 are, respectively, the full and the noninter-
acting Green’s functions and  is the self-energy. Note that
each function has the additional 2�2 matrix structure, G
= � GR

0
GK

GA � in the Keldysh space �with the three linearly inde-
pendent components: the retarded, the advanced, and the
Keldysh one�. Thanks to the usual multiplication rule of the
linear algebra, one can solve the Dyson Eq. �10� as Gk�	�
= �Gk

0−1
�	�−k�	��−1. In addition, a typical size of a Floquet

matrix that is needed to be taken in numerical calculations is
usually small because sufficiently high-order processes
should tend to be irrelevant when the driving field is not so
large, which also supports the usefulness of FGFM.

IV. NONINTERACTING ELECTRONS

Having defined the Floquet representation of Green’s
function in Eq. �7�, we then compute the Floquet-represented
Green’s function for noninteracting electrons. Although
FGFM has been used by several authors to study noninter-
acting electrons driven out of equilibrium, there are still fur-
ther developments yet to be explored. This has motivated us
to present an exact and unified description of FGFM that can
be applied to general noninteracting single-band systems in
this section.

In Sec. IV A we provide a general expression of the Flo-
quet representation of Green’s function for any single-band
model. Then in Sec. IV B we derive the inverse of Green’s
function, which will be used to build DMFT in the Floquet
matrix form in Sec. VI. After that, we show several examples
of Green’s function for the hypercubic �Sec. IV C� and other
lattices �Sec. IV D�. Throughout the paper we restrict our
discussion to a single-band model, and omit spin degrees of
freedom for simplicity.

A. General lattices and fields

Let �k be a band dispersion of the system. We make the
system subject to a homogeneous time-dependent electric
field periodic in t. Here we choose the temporal gauge or the
Hamiltonian gauge in which the scalar potential �=0. Re-
placing the momentum k with k−eA�t� �A�t�: a vector po-
tential� in �k gives the noninteracting Hamiltonian,

H�t� = �
k
�k−eA�t�ck

†ck, �11�

where ck
† and ck are the creation and the annihilation opera-

tors of the electrons, respectively, and we treat the electric
field as a classical one. The retarded Green’s function for
noninteracting electrons reads

Gk
R0�t,t�� = − i��t − t��
�ck�t�,ck

†�t���+�0

= − i��t − t��exp�− i�
t�

t

dt���k−eA�t�� − ��	 ,

�12�

where ��t� represents the step function, �,�+ is the anticom-
mutation relation, 
¯�0 is the statistical average with respect
to the initial density matrix �0=e−�H�A=0� �where the system
is assumed to be in equilibrium with the temperature �−1 at
t=−
�, and � is the chemical potential of the system. We can
transform Eq. �12� into the Wigner representation via Eq. �6�,
and then into the Floquet representation through Eq. �7�. The
details of the calculation are described in Appendix B. The
final result is

�Gk
R0�mn�	� = �

�

1

	 + �� + � − ��k�0 + i�

� �
−�

� dx

2�
�

−�

� dy

2�
ei�m−��x+i��−n�y

� exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	 ,

�13�

where � is a positive infinitesimal, and ��k�0 is the time-
averaged dispersion, which coincides with the zeroth Floquet
mode of �k,

��k�m−n = �
−�

� dz

2�
ei�m−n�z�k−eA�z/��. �14�

Equation �13� is the general Floquet representation of
Green’s function for the noninteracting system driven by a
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periodic field. What is notable about expression �13� is that it
can be decomposed into well-behaved matrices. Let us define
two Floquet matrices,

��k�mn = �
−�

� dx

2�
ei�m−n�x

� exp�−
i

�
�

0

x

dz��k−eA�z/�� − ��k�0�	 , �15�

and

�Qk�mn�	� =
1

	 + n� + � − ��k�0 + i�
�mn, �16�

where �k is unitary as shown in Appendix C, and Qk�	� is a
diagonal matrix. The physical meaning of these matrices will
be given later in Sec. V. Here let us just note a strikingly
simple decomposition,

Gk
R0�	� = �k · Qk�	� · �k

†, �17�

where we denote a multiplication of a Floquet matrix by “ ·,”
and omit Floquet indices in Eq. �17�. The decomposition �Eq.
�17�� is essentially used to derive the inverse of Green’s
function in Sec. IV B.

The Floquet representation of the advanced Green’s func-
tion is equal to the Hermitian adjoint of the retarded one:

�Gk
A0�mn�	�= �Gk

R0†
�mn�	�= �Gk

R0�nm
� �	�. Using Eq. �17�, we

have Gk
A0�	�=�k ·Qk

†�	� ·�k
†.

B. Inverse of Green’s function

When one solves a Dyson equation such as Eq. �10� to
include effects of interaction, the noninteracting part appears

as an inverse, Gk
R0−1

�	�, rather than Gk
R0�	� itself. Using re-

lation �17� and the unitarity of �k, we can analytically invert

Green’s function as Gk
R0−1

�	�=�k ·Qk
−1�	� ·�k

†, which can be
evaluated exactly as presented in Appendix D. The derived
expression for the inverse of Green’s function is

�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn − ��k�m−n. �18�

One can also prove Eq. �18� from the Dyson equation for
Gk

R0�t , t�� in a straightforward manner. Relation �18� means
that Green’s function is the kernel of Eq. �4�, or that the
Floquet representation of Green’s function is equivalent to
the inverse of the Floquet matrix form of the quasienergy
minus the Hamiltonian. One can use Eq. �18� for any single-
band Hamiltonian with a homogeneous electric field periodic
in time. In Secs. IV C and IV D, we present examples of the
calculations that utilize relation �18�.

C. Hypercubic lattice

As a first example, let us consider a simple cubic lattice in
d dimensions, whose energy dispersion is given by

�k
sc = − 2t�

i=1

d

cos ki, �19�

where t is the hopping and we set the lattice constant a=1.
For simplicity we assume that the vector potential A�t� is

parallel to �1,1 , . . . ,1� with each component Ai�t�=A�t�.
Substituting ki with ki−eA�t� in Eq. �19�, we have

�k−eA�t�
sc = �k

sc cos eA�t� + �̄k
sc sin eA�t� , �20�

where we have defined

�̄k
sc = − 2t�

i=1

d

sin ki, �21�

after Turkowski and Freericks.22 Note that �̄k
sc has the odd

time-reversal symmetry. Every equation including �k
sc and �̄k

sc

must be consistent against the time-reversal operation. For
instance, one usually finds the factor �k

sc+ i�̄k
sc, which is time-

reversal even since the imaginary unit i is time-reversal odd.
An integral over k is performed through

���, �̄� = �
k
��� − �k

sc����̄ − �̄k
sc� , �22�

which is called the joint density of states �JDOS�.22 This
contrasts with the equilibrium cases in which an integrand
depends on k only through �k

sc, so that we can replace the
integral variable k with �k

sc accompanied by the usual density
of states ����. The analytic expression for JDOS in arbitrary
d dimensions is summarized in Appendix E. In particular, in
infinite dimensions the JDOS becomes a Gaussian function
�Eq. �E2��.22 In the following, we consider two kinds of elec-
tric fields, a dc field �Sec. IV C 1�, and an ac field �Sec.
IV C 2�.

1. Hypercubic lattice in a dc field

A homogeneous dc field is given by the vector potential
proportional to time,

eA�t�a = �t , �23�

where

� = − eEa �24�

is the Bloch frequency. The system with the field �Eq. �23��
fulfills the periodicity condition �Eq. �2�� with the period
2� /� because of the periodic potential of the lattice. With
Eq. �13�, Green’s function has the following Floquet repre-
sentation,

�Gk
R0�mn�	� = ei�m−n��k�

�

1

	 + �� + � + i�

� Jm−�� �k

�
	J�−n� �k

�
	 , �25�

where Jn�z� is the nth-order Bessel function, and

�k = ���k
sc�2 + ��̄k

sc�2, �26�

tan �k = �̄k
sc/�k

sc. �27�

To see how Green’s function �25� behaves, we calculate the
local spectral function An�	�=− 1

� Im �k�Gk
R0�n�	� in infinite

dimensions. First, we transform Eq. �25� into the Wigner
representation, and then integrate it over k with the JDOS
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�Eq. �E2��. After taking the imaginary part, we arrive at

An�	� = �n,0�
�

a���	 + �� + �� . �28�

Here the coefficients in front of the delta functions are a�

=e−1/2�2
I��1 /2�2�, where I��z� is the modified Bessel func-

tion of the first kind. Note that the coefficients satisfy the
normalization condition, ��a�=1.

Equation �28� shows that the local spectral function has
only the n=0 component, indicating that the spectral func-
tion evolves into a time-independent function �Eq. �28�� for a
sufficiently long time elapsed after the dc field began to drive
the system.22 Later in Sec. VII A, we shall show that the
components with n�0 vanish due to a symmetry in the sys-
tem.

The spectral function on the hypercubic lattice, displayed
in Fig. 1, consists of a set of delta functions with a spacing
�, namely, the Wannier-Stark ladder. The width of each peak
�approximately effective hopping� is infinitesimal due to the
Bloch oscillation, where an electron is not free to run in a
lattice, but only oscillates with the frequency �.

The inverse of the Floquet-represented Green’s function
in this case is given via relation �18� by

�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn

−
1

2
���k

sc + i�̄k
sc��m−n,1 + ��k

sc − i�̄k
sc��m−n,−1�

= �	 + n� + � + i���mn

−
1

2
ei�m−n��k�k��m−n,1 + �m−n,−1� . �29�

The Hamiltonian part of Eq. �29� is explicitly written down
in a tridiagonal matrix form as

1

2
� �

� 0 �kei�k 0

�ke−i�k 0 �kei�k

�ke−i�k 0 �kei�k

�ke−i�k 0 �kei�k

0 �ke−i�k 0 �

� �

� .

�30�

As remarked in Sec. II, each component of the Floquet ma-
trix �Eq. �30�� represents a probability amplitude of a transi-
tion from one Floquet mode to another. Note that for the case
of the dc field, Hamiltonian �30� has no diagonal compo-
nents, which means that the electrons cannot stay stationary
but are always excited by the field. We also note that the off
diagonal components do not depend on � which is propor-
tional to the strength of the field. The dependence of � is
only taken into account through the quasienergy part of Eq.
�29�.

2. Hypercubic lattice in an ac field

Let us move on to the case of the ac field on the hyper-
cubic lattice. The vector potential is defined by

eA�t�a = A sin �t , �31�

where � is the frequency of the ac field, and

A = −
eEa

�
�32�

is its amplitude divided by the frequency. Although we use
the symbol �, this should not be confused with � �the Bloch
frequency� introduced in Eq. �24� for the dc field. Following
Eq. �13�, we derive the Floquet representation of Green’s
function as

�Gk
R0�mn�	� = �

�

1

	 + �� + � − �k
scJ0�A� + i�

��
−�

� dx

2�
�

−�

� dy

2�
ei�m−��x+i��−n�y

� exp�−
i

�
�

y

x

dz��k
sc�cos�A sin z� − J0�A��

+ �̄k
sc sin�A sin z��	 . �33�

Taking the imaginary part of Eq. �33� and integrating over k
with the JDOS �Eq. �E2��, we obtain the local spectral func-
tion. We depict it for several A and �=1 in Fig. 2. One can
see that the spectral function has narrow peaks at 	=n�
�n=0,�1,�2, . . .� known as the dynamical Wannier-Stark
ladder. The peaks at 	=�� correspond to one-photon ab-
sorption or emission, and the peaks at 	=�2� correspond
to a two-photon one, etc. The width of each peak, or the
effective hopping, is renormalized by the zeroth-order Bessel
function J0�A� as seen in Eq. �33�, and even vanishes making

� � � �
�

�

�

�

�

�
�

�

�

�

�

�

�
� � � �

�10 �5 0 5 10
0

0.1

0.2

�

a �

FIG. 1. The coefficients a� of the delta functions in the local
spectral function of the noninteracting electrons on the hypercubic
lattice with the dc field �=0.25 are plotted by the circles. The delta
functions with the spacing � are schematically shown by the solid
lines. The broken line is a guide for the eyes.
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the electrons completely localized when J0�A�=0. In Fig. 2
one finds that the widths of the peaks shrink as A approaches

the first zero �z=2.404 83¯� of J0�A� until finally the peaks
become the delta functions. This scaling has been known as
dynamical localization since the proposal by Dunlap and
Kenkre.23

The inverse of Green’s function in the ac field can be
calculated via Eq. �18�. The result is

�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn

− � �k
scJm−n�A� , m − n: even

i�̄k
scJm−n�A� , m − n: odd.

� �34�

The explicit Floquet matrix form of the Hamiltonian part of
Eq. �34� reads


� ]

�kJ0�A� i�̄kJ1�A� �kJ2�A� i�̄kJ3�A� �kJ4�A�
− i�̄kJ1�A� �kJ0�A� i�̄kJ1�A� �kJ2�A� i�̄kJ3�A�

¯ �kJ2�A� − i�̄kJ1�A� �kJ0�A� i�̄kJ1�A� �kJ2�A� ¯

− i�̄kJ3�A� �kJ2�A� − i�̄kJ1�A� �kJ0�A� i�̄kJ1�A�
�kJ4�A� − i�̄kJ3�A� �kJ2�A� − i�̄kJ1�A� �kJ0�A�

] �

� , �35�

where we omit the label “sc” attached to �k and �̄k for sim-
plicity. Taking the dc limit �→0 requires a special care
because of definition �32� which is singular at �=0. There-
fore a quantity calculated for a system in the presence of the
ac field with a finite frequency ��0 does not necessarily
reproduce the result calculated for a system with the dc field
discussed in Sec. IV C 1.

Let us examine the physical meaning of the Floquet ma-
trix �Eq. �35��. The �m ,n� component of Hamiltonian �35� is
proportional to Jm−n�A�. Since Jm−n�A��A�m−n� if A is suffi-
ciently small, the transition probability m→n is proportional
to E2�m−n�. For m�n, the process corresponds to stimulated
absorption, while it corresponds to stimulated emission for
m�n. The process of spontaneous emission is not included
since we assume that the electric field is classical so that
there is no quantum fluctuation of photon numbers. This as-
sumption is appropriate as long as the intensity of the electric
field considered here be so strong as a pulsed laser.

D. Application to other lattices

So far we have assumed that the vector potential A points
to the specific direction �1,1 , . . . ,1� in the hypercubic lattice.
We can more generally calculate the inverse of the noninter-
acting retarded Green’s function GR0−1

by making use of for-
mula �18� for arbitrary lattice structures and the vector po-
tentials. The disadvantage of such a general case is that,
since the k dependence of GR0−1

is not so simple as to be

only through �k
sc and �̄k

sc, the integral over k becomes com-
putationally heavier.

Here we note that there is a group of lattice models that
give a simple k-dependence of GR0−1

in infinite dimensions.
Among them are the face-centered cubic �fcc� �Sec. IV D 1�
and body-centered cubic �bcc� �Sec. IV D 2� lattices with A
parallel to �1,1 , . . . ,1� in infinite dimensions. It is instructive
to give examples other than the hypercubic lattice.

1. fcc lattice in infinite dimensions

The energy dispersion of the fcc lattice generalized to
arbitrary d dimensions �d�2� is given by

�k
fcc =

4

2�d�d − 1�
�
�=2

d

�
�=1

�−1

cos k� cos k�. �36�

In the infinite-dimensional limit �d→
� the dispersion of the
fcc lattice �k

fcc is related to that for the sc lattice �Eq. �19��
through,24

�k
fcc = ��k

sc�2 −
1

2
. �37�

Using Eqs. �18� and �37�, we derive the inverse of Green’s
function for the infinite-dimensional fcc lattice in the dc
field,

A � 0
1.5
2
2.2
2.3

�3 �2 �1 0 1 2 3
0

1

2

Ω

A
�Ω
�

FIG. 2. �Color online� The local spectral functions of the non-
interacting electrons on the hypercubic lattice coupled to the ac field
with �=1 and A=0, 1.5, 2, 2.2, and 2.3.

TSUJI, OKA, AND AOKI PHYSICAL REVIEW B 78, 235124 �2008�

235124-6



�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn −
1

4
ei�m−n��k��k

2��m−n,2

+ �m−n,−2� + 2��k
2 − 1��mn� . �38�

We see that the Hamiltonian part of the inverse of Green’s
function �the second term on the rhs of Eq. �38�� is written in
a pentadiagonal matrix form. In the same way we can obtain
Green’s function on the ac field via Eq. �18�. The result reads

�Gk
R0−1

�mn�	�

= �	 + n� + � + i���mn

−
1

2
��k

2 cos�2�k�Jm−n�2A� + ��k
2 − 1��mn, m − n: even

i�k
2 sin�2�k�Jm−n�2A� , m − n: odd.

�
�39�

We notice that the factors Jm−n�2A� and Jm−n�0�=�mn appear
in Eq. �39� �while Jm−n�A� appears on the sc lattice; see Eq.
�34��. Equations �38� and �39� indicate that Green’s functions
depend on k only via the two functions �k

sc �Eq. �19�� and �̄k
sc

�Eq. �21��, so that we can integrate over k using the JDOS
�Eq. �22��.

2. bcc lattice in infinite dimensions

The bcc lattice in d dimensions �d�3� is defined by the
dispersion relation,

�k
bcc = −

8

2�d�d − 1��d − 2�
�
�=3

d

�
�=2

�−1

�
�=1

�−1

cos k� cos k� cos k�.

�40�

We can take the limit d→
 in the same way as in the case of
the fcc lattice, and the dispersion converges to

�k
bcc =

2

3
��k

sc�3 − �k
sc, �41�

from which we can derive Green’s function in the dc field,

�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn

−
1

12
ei�m−n��k�k��k

2��m−n,3 + �m−n,−3�

+ 3��k
2 − 2���m−n,1 + �m−n,−1�� . �42�

In this case the Hamiltonian part of the inverse of Green’s
function �the second term on the rhs of Eq. �42�� becomes a
heptadiagonal matrix. Similarly, Green’s function in the ac
field is written as

�Gk
R0−1

�mn�	� = �	 + n� + � + i���mn −
1

6
��k��k

2 cos�3�k�Jm−n�3A� + 3��k
2 − 2�cos �kJm−n�A�� , m − n: even

i�k��k
2 sin�3�k�Jm−n�3A� + 3��k

2 − 2�sin �kJm−n�A�� , m − n: odd,
� �43�

where the factor Jm−n�3A� newly appears besides Jm−n�A�.
Again, Green’s functions depend on k only through �k

sc and
�̄k

sc, which makes an integral over k computationally quite
efficient with the JDOS �Eq. �22��.

V. DIAGONALIZATION OF FLOQUET MATRICES

Here we examine how to diagonalize a Floquet matrix
�	+n���mn−Hmn appearing in the original Schrödinger Eq.
�4� for the noninteracting electrons. We have shown in Sec.
IV A that the Floquet matrix form of Green’s function is
diagonalized into Qk�	� by the unitary transformation �k
�see Eq. �17��. In Sec. IV B, we have mentioned that the
inverse of Green’s function is equivalent to the Floquet ma-
trix �	+n�+�+ i���mn−Hmn. Combining these two facts,
we identify the eigenvalues and the eigenvectors of the Flo-
quet matrix. We summarize the statement below.

The eigenvalues of a Floquet matrix Hmn−n��mn for a
single-band noninteracting system subject to a homogeneous
electric field periodic in time are

− �Qk
−1�nn�0� = ��k�0 − n� = Hnn − n� �n = 0, � 1, � 2, . . .� ,

�44�

and for each n, the corresponding eigenvector is given by

uk
m−n = ��k�mn �m = 0, � 1, � 2, . . .� . �45�

This completely solves Floquet matrix problems for a single-
band system of noninteracting electrons. We note that the
fact that Eq. �44� gives the eigenvalues is essentially a con-
sequence of Shirley’s relation �Eq. �5� of Ref. 16�. Since
��k�0� is a dynamical phase, the above statement indicates
the absence of an additional geometrical phase �see Appen-
dix D�.

From Eqs. �17� and �45�, the noninteracting Green’s func-
tion can be written with the Floquet states as

�Gk
R0�mn�	� = �

�

uk
m−��uk

n−���

	 + �� + � − ��k�0 + i�
. �46�

One should note that the theorem cannot be applied to a
multiband system, where contributions of a geometrical
phase may survive and interband transition could be caused
by the electric field.

The theorem provides a unified description of periodically
driven systems: the original band structure �k is renormalized
into the time-averaged one ��k�0 due to the field, and the
renormalized band splits into its replicas with the spacing �.
On the �hyper�cubic lattice, the dc field changes the band
into the Wannier-Stark ladder with the infinitesimal band-
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width �Fig. 3�a��, while in the ac field, the bandwidth scales
with the factor J0�A� �Fig. 3�b��.

To see how the theorem actually works, let us apply it to
the d-dimensional fcc lattice model in the dc field as an
example. For convenience, we restrict our discussion in the
limit d→
. The Floquet matrix form of the Hamiltonian is
given by Eq. �38�. According to the theorem, its eigenvalues
are equal to the diagonal components: 	+n�− 1

2 ��k
2−1�. This

means that the dc field modifies the energy dispersion from
�k

fcc �Eq. �37�� to �̃k
fcc� 1

2 ��k
2−1�. The latter dispersion is

equivalent to the one for a �d−1�-dimensional hyperplane
perpendicular to �1,1 , . . . ,1�, the direction of the electric
field. We can interpret this fact as follows: the dc field makes
the electrons localize along the direction of the field due to
the Bloch oscillation, but the electrons are free to move
along the directions perpendicular to the field because along
those directions the force of the dc field does not act on the
electrons. As a result, the motion of the electrons is confined
on the hyperplane, and the energy dispersion becomes �̃k

fcc.
Another example is provided by an ac field. If one sees

the Floquet matrix form of the Hamiltonian for the system in
an ac field on the fcc �Eq. �39�� or bcc �Eq. �43�� lattices, one
finds that various kinds of band renormalization besides the
J0�A� scaling on the simple cubic lattice are implied by the
theorem.

Finally, let us consider electrons in a parabolic band �e.g.,
a conduction-band bottom in a semiconductor� with �k
=k2 /2m�. If we apply an ac field on it, the dispersion is

renormalized into ��k�0=�k+e2E2 /4m��2 �Fig. 3�c��. This
results from the dynamical Franz-Keldysh effect,25,26 which
is, in the present formalism, naturally understood through the
diagonalization picture of the Floquet matrix.

VI. DYNAMICAL MEAN-FIELD THEORY WITH THE
FLOQUET-GREEN FUNCTION METHOD

Now we are in position to combine FGFM with DMFT
for treating interacting systems in external fields. At the basis
of DMFT lies the fact that a lattice problem of correlated
many-body systems can be approximately mapped to a prob-
lem of an impurity embedded into the environment of an
effective medium when one ignores spatial fluctuations but
takes fully into account on-site dynamical correlation.12,27

The mapping is given as follows: let Z=��dci��dci
†�eiS�ci,ci

†�

be a partition function in terms of the original action, S

=�dt�dt��ijci
†�t�Gij

0−1
�t , t��cj�t��+�iSint�ci ,ci

†�, where the in-
teraction term is assumed to be a sum of the local terms.
Integrating out each site’s degrees of freedom except for a
representative site i=o, we have the local partition function

Zloc�G0�=��dco��dco
†�eiSloc�co,co

†�. Here the local action reads
Sloc=�dt�dt�co

†�t�G0
−1�t , t��co�t��+Sint�co ,co

†� �G0�t , t��: the
Weiss function�. If one ignores the nonlocal fluctuations, Z
and Zloc give a common site-diagonal self-energy, ij�t , t��
=�ij�t , t��. This fact enables us to build a set of self-
consistent closed equations, which can be solved with an
iterative numerical calculation. Although neglecting the spa-
tial fluctuation is generally an approximation, the nonlocal
corrections become rigorously irrelevant in the limit of infi-
nite dimensions, where the hopping parameter is scaled as
t= t� /2�d �t�: fixed�.28

DMFT is also applicable to nonequilibrium systems as
recently studied29–31 based on nonequilibrium Green’s-
function formalism. Similar to the equilibrium case, one has
self-consistent equations for Green’s function and the self-
energy. Now, the present proposal is that if the driven system
is periodic in time, one can rewrite the equations in the Flo-
quet matrix form,

�Gloc�mn�	� =
�Zloc�G0�

��G0
−1�nm�	�

, �47�

�Gloc
−1�mn�	� = �G0

−1�mn�	� − mn�	� , �48�

�Gk
−1�mn�	� = �Gk

0−1
�mn�	� − mn�	� , �49�

�Gloc�mn�	� = �
k

�Gk�mn�	� . �50�

To solve Eqs. �47�–�50� self-consistently, we first input the
inverse of the noninteracting Green’s function given by Eq.
�18� into Eq. �49�. After the initial self-energy is properly
chosen, the calculation is iterated until Green’s function con-
verges. For the lattices discussed in Secs. IV C and IV D, the
integral over k in Eq. �50� is performed via the JDOS �Eq.
�22��. As remarked in Sec. III, the size of the Floquet matrix
that needs to be taken in a calculation is usually small

(a)

(b)

²k

k
(c)

(²k)0

²k

FIG. 3. The band renormalization �k→ ��k�0 on the �hyper�cubic
lattice in �a� the dc field and �b� the ac field and �c� on a parabolic
band in the ac field. The solid line represents �k, while the dashed
line represents ��k�0. The circles are occupied states moving along
the arrows.

TSUJI, OKA, AND AOKI PHYSICAL REVIEW B 78, 235124 �2008�

235124-8



��5–30, depending on ��, which, with the analytic expres-
sion of the inverse of Green’s function �18�, makes our com-
putational costs dramatically small.

VII. GAUGE-INVARIANT GREEN’S FUNCTION

Before applying our method to a model, we examine the
gauge invariance of Green’s function. Let us write the coor-
dinates x�= �t ,r� and the vector potential A�= �� ,A� in the
four-vector form. The gauge transformation, A��x�→A��x�
+����x�, puts a phase factor to the creation and the annihi-
lation operators as c†�x�→e−ie��x�c†�x� and c�x�→eie��x�c�x�.
Accordingly Green’s function changes as G�x ,x��
→eie���x�−��x���G�x ,x��, i.e., the usual Green’s function is not
gauge invariant. It is known32,33 that one can make Green’s
function gauge invariant with an additional phase factor as

G̃�x,x�� = exp�− i�
x�

x

dy�eA��y�	G�x,x�� . �51�

G̃ depends on the path of the line integral in the exponent.
Here we adopt the conventional straight line connecting x
with x� as the path of the integral. Suppose that Green’s
function depends on k only through �k

sc and �̄k
sc. Then in the

temporal gauge ��=0� the Wigner representation of the

modified Green’s function G̃ becomes

G̃m��,�,	� = �
n
� d	�

2�

1

�
�

−�/2

�/2

dtav� dtrel

�ei�m−n��tav+i�	−	��trel

�Gn��,� + �
−1/2

1/2

d eA�tav +  trel�,	�	 ,

�52�

where � and � are defined in Eqs. �26� and �27�. Note that G̃
is calculated by shifting the variable � in the original Green’s
function. This suggests that Green’s function integrated in
terms of � is definitely gauge invariant, so that the local
Green’s function �kGk�	� is also gauge invariant.33 In the

following, we derive the gauge-invariant Green’s function G̃
for the dc field in Sec. VII A and the ac field in Sec. VII B.

A. dc field

To obtain G̃ for the dc field, we first note that the Hamil-
tonian in the dc field �Eq. �23�� has the time translation sym-
metry. If one makes a time translation t→ t+�t, the vector
potential changes as A�t�→A�t�+��t. Since the change
can be absorbed by the gauge transformation with
�=−��t�i=1

d xi, the Hamiltonian is invariant against time
translation. Then we assume that in the long-time limit after
the dc field is switched on the retarded Green’s function be-
comes independent of the initial correlations. This assump-
tion seems to be valid34 as numerically checked in Sec.
VIII A. As a result, a gauge-invariant quantity that is calcu-
lated from the retarded Green’s function should be indepen-
dent of the average time tav. For instance, the local Green’s

function in the Wigner representation �Gloc
R �n�	�, which is

gauge invariant as shown above, vanishes for n�0, so that
Gloc

R �t , t�� does not depend on tav. In the same way the self-
energy n

R�	� also vanishes for n�0.
Since the Floquet-represented self-energy mn

R �	� is diag-
onal due to the symmetry, we can identify the � dependence
of the Floquet representation of the retarded Green’s function
as

Gmn
R ��,�,	� = ei�m−n��Gmn

R ��,� = 0,	� . �53�

Using Eq. �53�, one can evaluate the gauge-invariant Green’s
function �52� as

G̃m
R��,�,	� = �m,0�

n

Gn
R��,�,	� , �54�

where we can see that every mode of Green’s function

equally contributes to G̃R.

B. ac field

For the ac field, which is one of the key questions in the
present paper, Green’s function has a more complicated �
dependence. To evaluate the gauge-invariant Green’s func-
tion �52�, here we expand the original Green’s function with
respect to eA�t� in a Taylor series: Gn

R�� ,�+�d eA ,	�
=��

1
�! ��d eA����

�Gn
R�� ,� ,	�. Then the Wigner representa-

tion of the gauge-invariant Green’s function is expressed as

G̃m
R��,�,	� = �

�n

2A�

� ! �
� d	���

�Gn
R��,�,	��

� Xm−n
��� Y���� 2

�
�	 − 	��	 , �55�

where

Xm−n
��� � �

−�

� dx

2�
ei�m−n�x sin� x =

1

�2i���
r=0

� ��

r
	�− 1�r�m−n,2r−�,

�56�

and

Y����k� � �
−



 dx

2�
eikx� sin x

x
	�

=
1

2��� − 1�!�r=0

� ��

r
	�− 1�r

��k + � − 2r��−1��k + � − 2r� �57�

for ��1. When �=0, we have Y����k�=��k�. The Floquet
representation of Eq. �55� reads

G̃mn
R ��,�,	� = Gmn

R ��,�,	� + �
�=1



2

� ! �
� A

2i
	�

�
r=0

�

�− 1�r��

r
	

���
	

�/2

d	��
k=0

�−1

+ �
−�/2

	

d	��
k=1

� 	
� ��

�Gm−r+k,n+r+k−�
R ��,�,	��Y���

�� 2

�
�	 − 	�� − 2k + �	 . �58�
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The derivative with respect to � in Eqs. �55� and �58� is
simplified when the system is on the hypercubic lattice. The
Floquet representation of the noninteracting Hamiltonian H
is then given by Eq. �35�, and the �th derivative of the Flo-
quet representation of the retarded Green’s function can be
calculated for every � via the recurrence relations

��H = H̄ , �59�

��H̄ = − H , �60�

��G
R = − GR�− ��H�GR = GRH̄GR. �61�

Employing Eqs. �59�–�61� with relation �58�, one can nu-
merically evaluate the gauge-invariant retarded Green’s func-

tion G̃R for the ac field.

VIII. APPLICATION TO THE FALICOV-KIMBALL
MODEL

To test the ability of the present method for treating
many-body systems, we apply it to the spinless FK model,
for which the Hamiltonian is

H = − �
ij

tijci
†cj + U�

i

ci
†cif i

†f i. �62�

Here f i �f i
†� annihilates �creates� a localized electron, and U

is a coupling constant. It is known that the FK model exhib-
its a metal-insulator transition in infinite dimensions from
DMFT calculations, where the possibility of charge-density
wave phases is ignored.14 The critical value of U for the
transition is known to be �2 on the hypercubic lattice at half
filling. The insulating phase is Mott-like, which means that
the insulating state originates from the electron correlation.

What characterizes the FK model is that it has an exact
solution for the impurity problem �Eq. �47�� within DMFT,
even out of equilibrium.29 The solution for the retarded
Green’s function is

Gloc
R �	� = w0G0

R�	� + w1�G0
R−1

�	� − U�−1, �63�

where w1 is the filling of the f electrons, and w0=1−w1.
Note that the retarded component of Green’s function de-
couples to the Keldysh component. Here we concentrate on
the retarded Green’s function, and calculate the local spectral
function An�	�=− 1

� Im�Gloc
R �n�	� �which is gauge invariant

as explained in Sec. VII� and the gauge-invariant spectral

function Ãn�k ,	�=− 1
� Im�G̃k

R�n�	� under the assumption that
the initial correlations are irrelevant to the retarded Green’s
function.

A. Falicov-Kimball model in the dc field

We first present the results for the dc field. We start with
noting that the integral over � can be performed analytically
due to relation �53�, and that Gloc

R , G0
R, and R in the Floquet

representation are all diagonal as mentioned in Sec. VII A,
which simplifies our calculation. All the matrices we have to
invert numerically are tridiagonal owing to Eq. �29�.

In Fig. 4 we illustrate the local spectral function A0�	� for
various values of U and � on the hypercubic lattice. The size
of the Floquet matrices that we choose is typically 9–13.
Convergence is achieved after typically 10–30 iterations,
where the calculation is quite stable over the parameter space
considered here. We can see that the present result in Figs.
4�b�–4�d� obtained in the Floquet method agrees well with
the previous results,33,35 where the nonequilibrium DMFT is
employed. This suggests that our assumption of the irrel-
evance of the initial correlations to the retarded Green’s
function is valid. In our results, the spectral function is posi-
tive definite, and satisfies the sum rule for the zeroth spectral
moment36 as in equilibrium. Therefore we can safely inter-
pret the quantity A�	� as the spectrum of the system even out
of equilibrium.

More interesting case is Figs. 4�e�–4�h�, where we can
observe how a Mott-like insulator �U=2� is driven into a
metallic state by the dc field. Namely, while there is a clear
band gap between the upper and lower bands in equilibrium
�Fig. 4�e�, �=0�, the gap disappears as the dc field is in-
creased, where the spectral weight around 	=0 develops.
Hence our calculation captures the Mott-like insulator-to-
metal transition induced by a static electric field. In the
strong dc field region �Figs. 4�b�–4�d�, 4�g�, and 4�h��, we
find complicated structures with the spacing �. We can at-
tribute these to the Wannier-Stark ladder �mentioned in Sec.
IV C 1�, which grows with the field intensity E�� �see Eq.
�24��. The Wannier-Stark structure interferes with the origi-
nal spectrum that comprises two bands with the spacing U,
producing a characteristic interference pattern.

B. Falicov-Kimball model in the ac field

We move on to the ac field. While the spectral function is
time independent for the dc field, i.e., the nonzeroth modes
of An�	� vanish, this is no longer the case for the ac field.
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FIG. 4. The local spectral function A0�	� for the FK model
coupled to the dc field on the hypercubic lattice at half filling.
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Since our interest resides in the time-averaged spectral func-
tion �dtavA�	 , tav�=A0�	�, we concentrate on the zeroth
mode of the spectral function. Unlike the dc case the integral
over � is nontrivial, which has to be calculated numerically.
In Figs. 5–8, we depict the local spectral function A0�	� on
the hypercubic lattice at half filling with the frequency of the
ac field �=1. The efficiency of the convergence and the
stability of the calculation are similar to the dc case.

In the metallic region �Fig. 5 for U=0.5 and Fig. 6 for
U=1.3�, one can see how the metallic spectrum of the sys-
tem is deformed by the ac field. Namely, the width of the
band shrinks with the intensity of the field. It can even goes
to zero when A coincides with a zero of J0�A�, which makes
interacting electrons localize. This is quite similar to the non-
interacting case as examined in Sec. IV C 2. Hence we have
the dynamical localization in interacting electron systems.
Note that the scaling of the bandwidth with J0�A� is a non-
linear effect of the ac field, as evident from J0�A�=1
− �A /2�2+¯. The difference between noninteracting and in-
teracting cases is that each peak in the dynamical Wannier-
Stark ladder at 	=n� �n=0,�1,�2, . . .� splits into two
with the spacing U due to the correlation effect. This can
clearly be seen in Fig. 5�c�.

In the insulating region �Fig. 7 for U=2.2 and Fig. 8 for
U=3.8�, on the other hand, we do observe the ac-field driven
transition from the Mott-like insulating state to a metallic
state. In equilibrium �Figs. 7�a� and 8�a�� the system has a
gap between the upper and lower bands. When the ac field is
switched on, the gap collapses �Figs. 7�b� and 8�b��, and a
spectral weight grows in the midgap region around 	=0. If
we compare Figs. 7�b� and 8�b�, we can see that the larger
the band gap, the smaller the midgap weight. From these
results, we see that metallic states appear in the insulating
system of correlated electrons in the intense ac field. As the
intensity of the ac field is further increased, the system
plunges into the dynamical localization regime, where the
bandwidth starts to scale with J0�A�.

To characterize the metallic state, we have calculated the

momentum resolved spectral function Ã0�k ,	�. For clarity
we take the simple cubic lattice with the JDOS �Eq. �E5�� in
three dimensions. As a key result in the present paper, we

plot the zeroth mode of the spectral function Ã0�k ,	� and
A0�	� for the frequency �=1 at half filling in Figs. 9 and 10,
where we take k=k�1,1 ,1�. One can check that the result
respects the particle-hole symmetry. As discussed in Sec.

VII B, numerical evaluation of Ã0�k ,	� is done in a pertur-
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FIG. 5. The zeroth mode of the local spectral function A0�	� of
the FK model coupled to the ac field ��=1� on the hypercubic
lattice at half filling for U=0.5.
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FIG. 6. The zeroth mode of the local spectral function A0�	� of
the FK model coupled to the ac field ��=1� on the hypercubic
lattice at half filling for U=1.3.
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FIG. 7. The zeroth mode of the local spectral function A0�	� of
the FK model coupled to the ac field ��=1� on the hypercubic
lattice at half filling for U=2.2.
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FIG. 8. The zeroth mode of the local spectral function A0�	� of
the FK model coupled to the ac field ��=1� on the hypercubic
lattice at half filling for U=3.8.
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bative way. Thus we can obtain reliable results only in a
weak intensity region. Although we use a perturbation in A,
higher-order contributions are included in our calculations.
To obtain the results in Figs. 9 and 10, the summation over �
in Eq. �58� is performed up to �=5. We have checked that
the expansion in terms of A converges for A!0.6. A calcu-
lation tends to be unstable when U is small �!1� where the
system is in a metallic state. When we analyze the results, we
have to be careful with the sign of the spectral function

Ã0�k ,	�. Although the local spectral function A0�	� is posi-

tive definite, Ã0�k ,	� is not so in general. While we notice

there are some regions where Ã0�k ,	� becomes negative, the
quantity is mostly positive for A!0.6 and U"2. The result
should be supported by other gauge-invariant quantities such
as the current or the optical conductivity, which is a future
problem.

First, let us see Figs. 9�a�–9�c�. These are the spectra of
the system in equilibrium �A=0�. One can see how the me-
tallic bands �Figs. 9�a�� change into the insulating ones �Figs.
9�b� and 9�c�� with a finite gap appearing with U. In the
insulating state, the upper band is almost a replica of the
lower one shifted upward by U, which is characteristic of the
FK model. When the ac field is turned on in Figs.

10�a�–10�c� �A=0.6�, we can see how the ac field generates a
new photoinduced band structure. In Fig. 10�b�, we can ob-
serve that a new band appears in the midgap region. This
band is created by the electrons that absorb or emit one pho-
ton with the energy �=1, that is, the photoinduced band is a
replica of the original lower and upper bands shifted by �. If
we assume that the states are occupied up to 	=0 as in
equilibrium, the electrons in the induced band around 	=0
play a role of carriers, making the system metallic. When the
interaction U is strong enough �Fig. 10�c�, U=3.8�, the me-
tallic band does not appear. Instead, sidebands appear near
the original bands with the spacing � in the midgap region.
Again, the electrons in the sidebands consist of the electrons
absorbing or emitting one photon with the energy �. Since �
is much smaller than U here, the electrons cannot reach the
region around 	=0 with a one-photon process. Therefore the
system remains to be insulating with the finite gap in the ac
field. As well as the case of the dc field, the sideband pattern
with the spacing � interferes with the original band structure
with the spacing U, yielding complicated band patterns.

C. Relevance to experiments

Finally we mention the relevance of the present results to
experiments. For the dc field, the intensity required for the

FIG. 9. �Color online� The zeroth mode of the gauge-invariant

spectral function Ã0�k ,	� with k=k�1,1 ,1� �the density plots� and
the local spectral function A0�	� �the line plots� of the FK model
coupled to the ac field ��=1� on the simple cubic lattice at half
filling for A=0 in units of t�. The color bars on the right side
represents the correspondence between the colors and the values of

Ã0�k ,	�.

FIG. 10. �Color online� The zeroth mode of the gauge-invariant

spectral function Ã0�k ,	� with k=k�1,1 ,1� �the density plots� and
the local spectral function A0�	� �the line plots� of the FK model
coupled to the ac field ��=1� on the simple cubic lattice at half
filling for A=0.6 in units of t�. The color bars on the right side
represent the correspondence between the colors and the values of

Ã0�k ,	�.
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effect considered here is �109–10 V /m for a�100–1 Å,
which is too strong to be realistic. However, in the case of
the ac field, the required intensity is A�1 �see Eq. �32�� for
the dimensionless quantity, which translates to E
�109–10 V /m �i.e., the intensity of �1011–13 W /cm2� for
��1 eV �visible light�. For a smaller � the required inten-
sity becomes smaller. Since the intensity of pulsed laser
available with recent advances in optical techniques reaches
such magnitudes,37 it should be possible to observe the non-
linear effects predicted in this paper in experiments. One
problem is that when the intensity goes beyond
�1012 W /cm2, atoms begin to be ionized and evaporated.
To make the required field intensity smaller, we can take
systems with large lattice constants, such as the zeolites
loaded with guest atoms.38 As an entirely different class of
systems, we can consider cold atoms in optical lattices,39

which may be an interesting playing ground for the effects
examined in the present paper.

IX. CONCLUSION

We have developed a theoretical method to formulate
photoinduced phenomena in correlated electron systems. The
method incorporates FGFM into DMFT, which can fully take
into account both the electron correlation effect and the non-
linear electric-field effect. We have applied the method to the
Falicov-Kimball model in ac fields to calculate the gauge-
invariant spectral functions. We find peculiar photoinduced
band structures, which arise from the nonlinear effect of the
electric field. In particular, we find a metallic state in the
midgap region of the Mott-like insulator induced by the ac

field. In the calculation we have utilized a theorem, found
here, that identifies eigenvalues and eigenvectors of a Flo-
quet matrix for single-band noninteracting electrons.

We believe that our approach has a potential ability to
treat, not only the FK model considered in the paper, but also
a wide class of models such as the Hubbard model. There are
some future problems: one is to calculate the Keldysh com-
ponent of Green’s function GK. We need the Keldysh Green’s
function to compute, e.g., the current or the optical conduc-
tivity which has information of the transport properties of the
system. An application to the Hubbard model is also desir-
able. Experimentally, the relaxation of photoinduced states
after the ac field is switched off is also an important phenom-
enon. This is theoretically interesting as well, for which fur-
ther developments on the nonequilibrium DMFT would be
necessary.
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APPENDIX A: MULTIPLICATION RULE FOR THE
FLOQUET MATRICES

Here we show that Floquet matrices obey the multiplica-
tion rule in the linear algebra. Let us prepare two functions
A�t , t�� and B�t , t�� which satisfy the periodicity condition:
A�t+� , t�+��=A�t , t�� �and so does B�. We write the follow-
ing integral in the Wigner representation:

� dt�A�t,t��B�t�,t�� =� dt��
�
� d	

2�
e−i	�t−t��−i���t+t��/2A��	��

��
� d	�

2�
e−i	��t�−t��−i����t�+t��/2B���	��

= �
���
� d	

2�
� d	�

2�
2���	 − 	� −

� + ��

2
�	e−i	t−i��t/2+i	�t�−i���t�/2A��	�B���	��

= �
���
� d	

2�
e−i	t−i��t/2+i�	−��+����/2�t�−i���t�/2A��	�B���	 −

� + ��

2
�	

= �
���
� d	

2�
e−i�	−���/2��t−t��−i��+�����t+t��/2A��	�B���	 −

� + ��

2
�	 .

Thus we have

�AB�k�	� = �
�+��=k

A��	 +
��

2
�	B���	 −

�

2
�	 .

Let us take an integer k� satisfying the condition k��k �mod
2�. Replacing 	 with 	+k�� /2 gives

�AB�k�	 +
k�

2
�	 = �

�+��=k

A��	 +
k� + ��

2
�	

�B���	 +
k� − �

2
�	 . �A1�

If we write Eq. �A1� in the Floquet representation following
its definition �7�, we arrive at the conclusion,
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�AB��k+k��/2,�k�−k�/2�	�

= �
�

A�k+k��/2,�k+k��/2−��	�B�k+k��/2−�,�k�−k�/2�	� ,

or a more transparent expression,

�AB�mn�	� = �
m�

Amm��	�Bm�n�	� ,

where m= �k+k�� /2, n= �k�−k� /2, and m�= �k+k�� /2−�, all
of which are integers due to k�k� �mod 2�. This ensures that
we can apply the usual multiplication rule of a matrix to
every Floquet-represented function.

APPENDIX B: DERIVATION OF THE FLOQUET
REPRESENTATION OF THE NONINTERACTING

GREEN’S FUNCTION

Here we derive the Floquet representation �Eq. �13�� of
Green’s function. Let us start with Eq. �12�. We find that the
argument of the exponential in Eq. �12� is not invariant under

discrete translation against trel. To somehow make it invariant
under such a translation, we rewrite Eq. �12� into

Gk
R0�t,t�� = − i��trel�eitrel��−��k�0�

�exp�− i�
tav−trel/2

tav+trel/2

dt���k−eA�t�� − ��k�0�	 .

�B1�

Here ��k�0 is defined in Eq. �14�. Now that the argument of
the exponential in Eq. �B1� is periodic in trel with the period
2� and in tav with the period �, we can insert the factors

��e−i��trel/2 1
2��−�

� dtrel� ei��trel� /2 and �me−im�tav 1
��−�/2

�/2 dtav� eim�tav�

into Eq. �B1�. Then, with the Fourier-transformed expression
of the step function,

��trel� = −
1

2�i
� d	�

e−i	�trel

	� + i�
, �B2�

where � is an infinitesimal positive constant, we can perform
the Wigner transformation of Eq. �B1� as

�Gk
R0�n�	� = �

�m
� d	�

2�

1

	� + i�
� dtrel

1

�
�

−�/2

�/2

dtave
i�	+�−��k�0−	�−��/2�trel+i�n−m��tav

�
1

2�
�

−�

�

dtrel�
1

�
�

−�/2

�/2

dtav� ei��trel� /2+im�tav� exp�− i�
tav� −trel� /2

tav� +trel� /2
dt���k−eA�t�� − ��k�0�	 . �B3�

In order to make our notation clearer, we change the integral
variables as �trel� /2=x�, �tav� =y�. After some calculations,
we obtain

�Gk
R0�n�	� = �

��n

mod 2

1

	 − ��/2 + � − ��k�0 + i�

��
−�

� dx�

2�
�

−�

� dy�

2�
ei�x�+iny�

� exp�−
i

�
�

y�−x�

y�+x�
dz��k−eA�z/�� − ��k�0�	 .

�B4�

In the above we have used the fact that the integral in Eq.
�B4� equals zero when ��” n �mod 2� since ��dx�dy�= ���I
+��III�+ ���II+��IV�= �1+ �−1��+n����I+��II�, where the Ro-
man numerals represent the ranges of the integral defined in
Fig. 11. We further change the integral variables: x�+y�=x,
x�−y�=−y. Here we have to be careful with the range of the
integral. As shown in Fig. 11, we change the range of the
integral from ���dx�dy� to 1

2���dx�dy�, which is equal to
1
2�−2�

2� dx�−2�
2� dy times 1

2 coming from the Jacobian. Then we
change the range of the integral again: 1

2 �
1
2�−2�

2� dx�−2�
2� dy

=�−�
� dx�−�

� dy. Note that the two 1
2 factors are canceled out

by the change of the range of the integral. As a consequence,
we arrive at the general Wigner representation of Green’s
function,

0

III

III IV
�2 Π �Π Π 2 Π

x�

�2 Π

�Π

Π

2 Π

y�

FIG. 11. The range of the integral: each Roman numeral denotes
the corresponding shaded region, the symbols � and � used in the
text denote the regions surrounded by the solid line and the broken
line, respectively.
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�Gk
R0�n�	� = �

��n

mod 2

1

	 − ��/2 + � − ��k�0 + i�

��
−�

� dx

2�
�

−�

� dy

2�
ei��+n�x/2−i��−n�y/2

�exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	 .

�B5�

Next, let us move on to the Floquet representation. Follow-
ing the definition of the Floquet representation �Eq. �4��, we
have

�Gk
R0�mn�	� = �

��m−n

mod 2

1

	 + �m + n − ���/2 + � − ��k�0 + i�

� �
−�

� dx

2�
�

−�

� dy

2�
ei��+m−n�x/2−i��−m+n�y/2

�exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	 .

In the above we can replace m+n−� with 2� due to m+n
−��m−n−��0 �mod 2�, which gives Eq. �13�.

APPENDIX C: UNITARITY OF �k

We prove that �k defined by Eq. �15� is a unitary matrix
for any �k and A�t� as

�
�

��k�m���k
†��n = �

−�

� dx

2�
�

−�

� dy

2��
�

ei�mx−ny�−i��x−y�

�exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	
= �

−�

� dx

2�
�

−�

�

dy��x − y�ei�mx−ny�

�exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	
= �

−�

� dx

2�
ei�m−n�x = �mn.

Since �k is nothing but a set of Floquet state vectors �Eq.
�45��, this unitarity relation indicates that the Floquet states
uk

m−n form an orthonormal and complete basis.

APPENDIX D: INVERSE OF Gk
R0

The inverse of �Gk
R0�mn�	� is calculated for any �k and

A�t� as follows. First, using expression �17� we have Gk
R0−1

=�k ·Qk
−1�	� ·�k

† since �k is unitary as proved in Appendix
C. Among the terms in the diagonal matrix Qk

−1�	�, �	+�
− ��k�0+ i���mn commutes with �k, giving a trivial result.
The only nontrivial part, n��mn, is evaluated as

�
�

��k�m�����k
†��n = �

−�

� dx

2�
�

−�

� dy

2��
�

ei�mx−ny�−i��x−y��� exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	
= �

−�

� dx

2�
�

−�

�

dyi���x��x − y��ei�mx−ny� exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	
= �

−�

� dx

2�
�

−�

�

dy��x − y��m� − �k−eA�x/�� + ��k�0�ei�mx−ny�exp�−
i

�
�

y

x

dz��k−eA�z/�� − ��k�0�	
= �m� + ��k�0��mn − ��k�m−n. �D1�

Between the second and the third lines we have integrated by
parts. The contribution coming from the boundary is negli-
gible due to the presence of the delta function. Thus the
simple expression �Eq. �18�� results.

We note that relation �D1� for the Floquet indices m=n
=0 reduces to the geometrical phase, �k=�−�/2

�/2 dtuk
��t�i�tuk�t�.

From Eq. �D1�, we can show that it is exactly absent
in the single-band noninteracting system, �k=
−2������k�0���k

†��0=0.

APPENDIX E: JOINT DENSITY OF STATES IN
ARBITRARY FINITE DIMENSIONS

An analytic expression for JDOS defined by Eq. �22� can
be obtained in arbitrary dimensions. We first substitute the
delta functions in Eq. �22� with the integrals over auxiliary
variables s and s̄:

���, �̄� = �
−



 ds

2�
�

−



 ds̄

2�
eis�+is̄�̄�

k
e2it�i�s cos ki+s̄ sin ki�.
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We then replace � and �̄ with � and � in accordance with �
=� cos � and �̄=� sin �, and change the integral variables as
s=# sin � and s̄=# cos �. After the integrations, we obtain

���� = �
0


 d#

2�
#J0��#��J0�2t#��d. �E1�

This is the general expression for the JDOS in d dimensions.
Note that the JDOS is independent of � in any dimension.

The infinite-dimensional case is readily reproduced since
J0�z�=1− �z /2�2+O�z4� and t= t� /2�d, the factor �J0�2t#��d

converges to e−�# / 2�2
in the limit d→
. With a formula for

the integral of the Bessel function, we reproduce the known
JDOS in infinite dimensions:22

�d=
��� =
1

�
e−�2

. �E2�

In the case of finite dimensions, we can systematically de-
duce the JDOS from Eq. �E1� with an appropriate integral
formula related to the Bessel function. In the following we
list the derived expression of the JDOS for d=1,2 ,3:

�d=1��� =
1

2��2t�
��� − 2t� , �E3�

�d=2��� = � 1

�2��4�2t�2 − �2
, 0 � �� 4t

0, 4t � � ,
� �E4�

�d=3��� =�
2

�3��� + 2t�3�6t − ��
K�4� �2t�3�

�� + 2t�3�6t − ��
	 , 0 � �� 2t

1

2�3��2t�3�
K�1

4
��� + 2t�3�6t − ��

�2t�3�
	 , 2t � �� 6t

0, 6t � � ,
� �E5�

where K�k� is the elliptic integral of the first kind. In Fig. 12 we plot the JDOS for d=3 and d=
. We can observe that �d=3
diverges at �=2t, which originates from the van Hove singularity of the simple cubic lattice.
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